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Figure 1: In this work, we propose a novel multimodal garment designer framework based on latent diffusion models that
can generate a novel fashion image conditioned on text, human keypoints, and a garment sketch.

Abstract
Fashion illustration is used by designers to communi-

cate their vision and to bring the design idea from con-
ceptualization to realization, showing how clothes inter-
act with the human body. In this context, computer vi-
sion can thus be used to improve the fashion design pro-
cess. Differently from previous works that mainly focused
on the virtual try-on of garments, we propose the task of
multimodal-conditioned fashion image editing, guiding the
generation of human-centric fashion images by following
multimodal prompts, such as text, human body poses, and
garment sketches. We tackle this problem by proposing a
new architecture based on latent diffusion models, an ap-
proach that has not been used before in the fashion do-
main. Given the lack of existing datasets suitable for the
task, we also extend two existing fashion datasets, namely
Dress Code and VITON-HD, with multimodal annotations
collected in a semi-automatic manner. Experimental re-

sults on these new datasets demonstrate the effectiveness
of our proposal, both in terms of realism and coherence
with the given multimodal inputs. Source code and col-
lected multimodal annotations are publicly available at:
https://github.com/aimagelab/multimodal-garment-designer.

1. Introduction
Computer Vision research has always paid much atten-

tion both to the human person and to fashion-related prob-
lems, especially working on the recognition and retrieval
of clothing items [11, 24], the recommendation of similar
garments [8, 18, 41], and the virtual try-on of clothes and
accessories [7, 13, 29, 30, 50, 55]. In the last years, some re-
search efforts have been dedicated to the text-conditioned
image editing task where, given a model image and a tex-
tual description of a garment, the goal is to generate the
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input model wearing a new clothing item corresponding to
the given textual description. In this context, only a few
works [19,35,59] have been proposed, exclusively employ-
ing GAN-based approaches for the generative step.

Recently, diffusion models [10,17,32,44] have attracted
more and more attention due to their outstanding genera-
tion capabilities, allowing the improvement of a variety of
downstream tasks in several domains, while their applica-
bility to the fashion domain is still unexplored. Many dif-
ferent solutions have been introduced and can roughly be
identified based on the denoising conditions used to guide
the diffusion process, which can enable greater control of
the synthesized output. A particular type of diffusion model
has been proposed in [39] that, instead of applying the dif-
fusion process in the pixel space, defines the forward and
the reverse processes in the latent space of a pre-trained au-
toencoder, becoming one of the leading choices thanks to
its reduced computational cost. Although this solution can
generate highly realistic images, it does not perform well in
human-centric generation tasks and can not deal with mul-
tiple conditioning signals to guide the generation phase.

In this work, we address an extended and more gen-
eral framework and define the new task of multimodal-
conditioned fashion image editing, which allows guiding
the generative process via multimodal prompts while pre-
serving the identity and body shape of a given person
(Fig. 1). To tackle this task, we introduce a new archi-
tecture, called Multimodal Garment Designer (MGD), that
emulates the process of a designer conceiving a new gar-
ment on a model shape, based on preliminary indications
provided through a textual sentence or a garment sketch.
In particular, starting from Stable Diffusion [39], we pro-
pose a denoising network that can be conditioned by multi-
ple modalities and also takes into account the pose consis-
tency between input and generated images, thus improving
the effectiveness of human-centric diffusion models.

To address the newly proposed task, we present a semi-
automatic framework to extend existing datasets with mul-
timodal data. Specifically, we start from two famous virtual
try-on datasets (i.e. Dress Code [30] and VITON-HD [7])
and extend them with textual descriptions and garment
sketches. Experimental results on the two proposed mul-
timodal fashion benchmarks show both quantitatively and
qualitatively that our proposed architecture generates high-
quality images based on the given multimodal inputs and
outperforms all considered competitors and baselines, also
according to human evaluations.

To sum up, our contributions are as follows: (1) We pro-
pose a novel task of multimodal-conditioned fashion image
editing, which entails the use of multimodal data to guide
the generation. (2) We introduce a new human-centric gen-
erative architecture based on latent diffusion models, capa-
ble of following multimodal prompts while preserving the

model’s characteristics. (3) To tackle the new task, we ex-
tend two existing fashion datasets with textual sentences
and garment sketches devising a semi-automatic annotation
framework. (4) Extensive experiments demonstrate that the
proposed approach outperforms other competitors in terms
of realism and coherence with multimodal inputs.

2. Related Work
Text-Guided Image Generation. Creating an image that
faithfully reflects the provided textual prompt is the goal of
text-to-image synthesis. In this context, early approaches
were based on GANs [48, 54, 56, 58], while most re-
cent solutions exploit the effectiveness of diffusion mod-
els [33, 37, 39]. In the fashion domain, only a few attempts
of text-to-image synthesis have been proposed [19, 35, 59].
Specifically, Zhu et al. [59] presented a GAN-based solu-
tion that generates the final image conditioned on both tex-
tual descriptions and semantic layouts. A different approach
is the one introduced in [35], where a latent code regular-
ization technique is employed to augment the GAN inver-
sion process by exploiting CLIP textual embeddings [36] to
guide the image editing process. Instead, Jiang et al. [19]
proposed an architecture that synthesizes full-body images
by mapping the textual descriptions of clothing items into
one-hot vectors, limiting however the expressiveness capa-
bility of the conditioning signal.
Multimodal Image Generation with Diffusion Models.
A related line of works aims to condition existing diffu-
sion models on different modalities thus enabling greater
control over the generation process [5, 6, 27, 31, 51]. For
example, Choi et al. [6] proposed to refine the generative
process of an unconditional denoising diffusion probabilis-
tic model [32] by matching each latent variable with the
given reference image. On a different line, the approach in-
troduced in [27] adds noise to a stroke-based input and ap-
plies the reverse stochastic differential equation to synthe-
size images, without additional training. Wang et al. [51],
instead, proposed to learn a highly semantic latent space and
perform conditional finetuning for each downstream task to
map the guidance signals to the pre-trained space. Other
recent works proposed to add sketches as additional condi-
tioning signals, either concatenating them with the model
input [5] or training an MLP-based edge predictor to map
latent features to spatial maps [49].

Among contemporary works that aim to condition pre-
trained latent diffusion models, ControlNet [57] proposes
to extend the Stable Diffusion model [39] with an additional
conditioning input. This process involves creating two ver-
sions of the original model’s weights: one that remains fixed
and unchanged (locked copy) and another that can be up-
dated during training (trainable copy). The purpose of this
is to allow the trainable version to learn the newly intro-
duced condition while the locked version retains the origi-
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Figure 2: Overview of the proposed Multimodal Garment Designer (MGD), a human-centric latent diffusion model condi-
tioned on multiple modalities (i.e. text, human pose, and garment sketch).

nal model knowledge. On the other hand, T2I-Adapter [31]
learns modality-specific adapter modules that enable Stable
Diffusion conditioning on new modalities.

In contrast, we focus on the fashion domain and pro-
pose a human-centric architecture based on latent diffusion
models that directly exploits the conditioning of textual sen-
tences and other modalities such as human body poses and
garment sketches.

3. Proposed Method
In this section, we propose a novel task to automatically

edit a human-centric fashion image conditioned on multi-
ple modalities. Specifically, given the model image I ∈
RH×W×3, its pose map P ∈ RH×W×18 where the chan-
nels represent the human keypoints, a textual description Y
of a garment, and a sketch of the same S ∈ RH×W×1, we
want to generate a new image Ĩ ∈ RH×W×3 that retains the
information of the input model while substituting the target
garment according to the multimodal inputs. To tackle the
task, we propose a novel latent diffusion approach, called
Multimodal Garment Designer (MGD), that can effectively
combine multimodal information when generating the new
image Ĩ . Our proposed architecture is a general framework
that can be easily extended to other modalities such as tex-
ture and 3d information. We strongly believe this task can
foster research in the field and enhance the design process of
new fashion items with greater customization. An overview
of our model is shown in Fig. 2.

3.1. Preliminaries

While diffusion models [44] are latent variable architec-
tures that work in the same dimensionality of the data (i.e. in
the pixel space), latent diffusion models (LDMs) [39] oper-
ate in the latent space of a pre-trained autoencoder achiev-
ing higher computational efficiency while preserving the
generation quality. In our work, we leverage the Stable
Diffusion model [39], a text-to-image implementation of
LDMs as a starting point to perform multimodal condition-

ing for human-centric fashion image editing. Stable Dif-
fusion is composed of an autoencoder with an encoder E
and a decoder D, a text-time-conditional U-Net denoising
model ϵθ, and a CLIP-based text encoder TE taking as in-
put a text Y . The encoder E compresses an image I into a
lower-dimensional latent space defined in Rh×w×4, where
h = H/8 and w = W/8. The decoder D performs the
opposite operation, decoding a latent variable into the pixel
space. For the sake of clarity, we define the ϵθ convolu-
tional input (i.e. zt in this case) as spatial input γ because of
the property of convolutions to preserve the spatial structure
and the attention conditioning input as ψ. The denoising
network ϵθ is trained according to the following loss:

L = EE(I),Y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(γ, ψ)∥22

]
, (1)

where t is the diffusing time step, γ = zt, ψ = [t;TE(Y )],
and ϵ ∼ N (0, 1) is the Gaussian noise added to E(I).

3.2. Human-Centric Image Editing

Our task aims to generate a new image Ĩ , by replac-
ing in the input image I the target garment using multi-
modal inputs, while preserving the model’s identity and
physical characteristics. As a natural consequence, this task
can be identified as a particular type of inpainting tailored
for human body data. Instead of using a standard text-to-
image model, we perform inpainting concatenating along
the channel dimension of the denoising network input zt an
encoded masked image E(IM ) and the relative resized bi-
nary inpainting mask m ∈ {0, 1}h×w×1, which is derived
from the original inpainting mask M ∈ {0, 1}H×W×1.
Since here, the spatial input of the denoising network is
γ = [zt;m; E(IM )], γ ∈ Rh×w×9. Thanks to the fully
convolutional nature of the encoder E and the decoder D,
this LDMs-based architecture can preserve the spatial in-
formation in the latent space. Exploiting this feature, our
method can thus optionally add conditioning constraints to
the generation. In particular, we propose to add two gener-
ation constraints in addition to the textual information: the

3



model pose map P to preserve the original human pose of
the input model and the garment sketch S to allow the final
users to better condition the garment generation process.
Pose Map Conditioning. In most cases [23, 26, 47], in-
painting is performed with the objective of either remov-
ing or entirely replacing the content of the masked region.
However, in our task, we aim to remove all information re-
garding the garment worn by the model while preserving the
model’s body information and identity. Thus, we propose to
improve the garment inpainting process by using the bound-
ing box of the segmentation mask along with pose map in-
formation representing body keypoints. This approach en-
ables the preservation of the model’s physical characteris-
tics in the masked region while allowing the inpainting of
garments with different shapes. Differently from conven-
tional inpainting techniques, we focus on selectively retain-
ing and discarding specific information within the masked
region to achieve the desired outcome. To enhance the per-
formance of the denoising network with human body key-
points, we modify the first convolution layer of the net-
work by adding 18 additional channels, one for each key-
point. Adding new inputs usually would require retraining
the model from scratch, thus consuming time, data, and re-
sources, especially in the case of data-hungry models like
the diffusion ones. Therefore, we propose to extend the ker-
nels of the pre-trained input layer of the denoising network
with randomly initialized weights sampled from a uniform
distribution [14] and retrain the whole network. This con-
sistently reduces the number of training steps and enables
training with less data. Our experiments show that such im-
provement enhances the consistency of the body informa-
tion between the generated image and the original one.
Incorporating Sketches. Fully describing a garment us-
ing only textual descriptions is a challenging task due to
the complexity and ambiguity of natural language. While
text can convey specific attributes like style, color, and pat-
terns of a garment, it may not provide sufficient informa-
tion about its spatial characteristics, such as shape and size.
This limitation can hinder the customization of the gener-
ated clothing item other than the ability to accurately match
the user’s intended style. Therefore, we propose to lever-
age garment sketches to enrich the textual input with ad-
ditional spatial fine-grained details. We achieve this fol-
lowing the same approach described for pose map condi-
tioning. The final spatial input of our denoising network is
γ = [zt;m; E(IM ); p; s], [p; s] ∈ Rh×w×(18+1), p and s
are obtained by resizing P and S to match the latent space
dimensions. In the case of sketches, we only condition the
early steps of the denoising process as the final steps have
little influence on the shapes [2].
Mask Composition. To preserve the model identity when
performing human-centric inpainting, we perform mask
composition as the final step of the proposed approach.

Defining Î = D(z0) ∈ RH×W×3 as the output of the de-
coder D and Mhead ∈ {0, 1}H×W×1 as the model face bi-
nary mask of the image I , the final output image Ĩ is ob-
tained as follows: Ĩ =Mhead ⊙ I + (1−Mhead)⊙ Î , where
⊙ denotes the element-wise multiplication operator.

3.3. Training and Inference

As in standard latent diffusion models, given an encoded
input z = E(I), the proposed denoising network is trained
to predict the noise stochastically added to z. The corre-
sponding objective function can be specified as

L = EE(I),Y,ϵ∼N (0,1),t,E(IM ),m,p,s

[
∥ϵ− ϵθ(γ, ψ)∥22

]
,
(2)

where γ = [zt;m; E(IM ); p; s] and ψ = [t;TE(Y )].
Classifier-Free Guidance. Classifier-free guidance is an
inference technique that requires the denoising network to
work both conditioned and unconditioned. This method
modifies the unconditional model predicted noise moving
it toward the conditioned one. Specifically, the predicted
diffusion process at time t, given the generic condition c, is
computed as follows:

ϵ̂θ(zt|c) = ϵθ(zt|∅) + α · (ϵθ(zt|c)− ϵθ(zt|∅)), (3)

where ϵθ(zt|c) is the predicted noise at time t given the con-
dition c, ϵθ(zt|∅) is the predicted noise at time t given the
null condition, and the guidance scale α controls the degree
of extrapolation towards the condition.

Since our model deals with three conditions (i.e. text,
pose map, and sketch), we use the fast variant multi-
condition classifier-free guidance proposed in [1]. Instead
of performing the classifier-free guidance according to each
condition probability, it computes the direction of the joint
probability of all the conditions ∆t

joint = ϵθ(zt|{ci}i=N
i=1 ) −

ϵθ(zt|∅):

ϵ̂θ(zt|{ci}i=N
i=1 ) = ϵθ(zt|∅) + α ·∆t

joint. (4)

This reduces the number of feed-forward executions from
N + 1 to 2.
Unconditional Training. Ensuring the ability of the de-
noising model to work both with and without conditions is
achieved by replacing at training time the condition with a
null one according to a fixed probability. This approach
allows the model to learn from both conditional and un-
conditional samples, resulting in improved mode coverage
and sample fidelity. Moreover, this technique also allows
the model to optionally use the control signals at prediction
time. Since our approach considers multiple conditions, we
propose to extend the input masking to each condition in-
dependently. Experiments show that tuning this parameter
can effectively affect the quality of the final result.
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4. Collecting Multimodal Fashion Datasets
Currently available datasets for fashion image genera-

tion often contain low-resolution images and lack all the re-
quired multimodal information needed to perform the task
previously described. For this reason, the collection of new
multimodal datasets for the fashion domain plays a cru-
cial role to advance research in the field. To this aim, we
start from two recent high-resolution fashion datasets intro-
duced for the virtual try-on task, namely Dress Code [30]
and VITON-HD [7], and extend them with textual sen-
tences and garment sketches. Both datasets include image
pairs with a resolution of 1024 × 768, each composed of
a garment image and a reference model wearing the given
fashion item. In this section, we introduce a framework
to semi-automatically annotate fashion images with multi-
modal information and provide a complete description of
how to enrich Dress Code and VITON-HD with garment-
related text and sketches. We call our extended versions
of these datasets Dress Code Multimodal and VITON-HD
Multimodal, respectively. Sample images and multimodal
data of the collected datasets can be found in Fig. 3.

4.1. Dataset Collection and Annotation

Data Preparation. We start the annotation from the Dress
Code dataset, which contains more than 53k model-garment
pairs of multiple categories. As a first step, we need to
associate each garment with a textual description contain-
ing fashion-specific and non-generic terms which are suffi-
ciently detailed but not extremely lengthy to be exploited for
constraining the generation. Motivated by recent findings
in the field showing that humans tend to describe fashion
items using only a few words [3], we propose to use noun
chunks (i.e. short textual sentences composed of a noun
along with its modifiers) that can effectively capture impor-
tant information while reducing unnecessary words or de-
tails. Given that manually annotating all the images would
be time-consuming and resource-intensive1, we propose a
novel framework to semi-automatically annotate the dataset
using noun chunks. Firstly, domain-specific captions are
collected from two available fashion datasets, namely Fash-
ionIQ [53] and Fashion200k [12], standardizing them with
word lemmatization and eventually reducing each word to
its root form with the NLTK library2. Then, we extract noun
chunks from the captions, filtering the results by removing
all textual items that start with or contain special characters.
After this pre-processing stage, we obtain more than 60k
unique noun chunks, divided into three different categories
(i.e. upper-body clothes, lower-body clothes, and dresses).

1Since the Dress Code dataset consists of over 53k fashion items and
assuming that each annotation requires approximately 5 minutes, a single
annotator working 8 hours per day, 5 days a week, and 260 working days
per year would take more than 2 years to complete the annotation task.

2https://www.nltk.org/
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Figure 3: Sample images and multimodal data from our
newly collected datasets.

# Unique # Unique
Dataset Text Pose Sketch # Images # Products Texts Words

VITON-HD [7] ✗ ✓ ✗ 27,358 13,679 - -
Dress Code [30] ✗ ✓ ✗ 107,584 53,792 - -

Be Your Own Prada [59] ✓ ✓ ✗ 78,979 N/A 3,972 445
DF-Multimodal [19] ✓ ✓ ✗ 44,096 N/A 10,253 77

VITON-HD Multimodal ✓ ✓ ✓ 27,358 13,679 5,143 1,613
Dress Code Multimodal ✓ ✓ ✓ 107,584 53,792 25,596 2,995

Table 1: Comparison of Dress Code and VITON-HD Mul-
timodal with other fashion datasets with multimodal anno-
tations.

To determine the most relevant noun chunks for each
garment, we employ the CLIP model [36] and its open-
source adaptation (i.e. OpenCLIP [52]). We select the VIT-
L14@336 and RN50×64 models for CLIP, and the VIT-
L14, ViT-H14, and ViT-g14 models for OpenCLIP. Prompt
ensembling is performed to improve the results and, for
each image, we select 25 noun chunks based on the top-5
noun chunks per model rated by cosine similarity between
image and text embeddings, avoiding repetitions.

Fine-Grained Textual Annotation. To ensure the accuracy
and representativeness of our annotations, we manually an-
notate a significant portion of Dress Code images. In par-
ticular, we select the three most representative noun chunks,
among the 25 automatically associated, with each garment
image. To minimize the annotation time, we develop a cus-
tom annotation tool that constrains the annotation time to
an average time of 60 seconds per item and allows the an-
notator to manually insert noun chunks in the case that none
of the automatically extracted ones are suitable for the im-
age. Overall, we manually annotate 26,400 different gar-
ments (8,800 for each category) out of the 53,792 products
included in the dataset, ensuring to include all fashion items
of the original test set [30].

Coarse-Grained Textual Annotation. To complete the an-
notation, we first finetune the OpenCLIP ViT-B32 model,
pre-trained on the English portion of the LAION5B
dataset [42], using the newly annotated image-text pairs.
We then use this model and the collected set of noun chunks

5
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to automatically tag all the remaining elements of the Dress
Code dataset with the three most similar noun chunks, al-
ways determined via cosine similarity between multimodal
embeddings. We employ the same strategy also to auto-
matically annotate all garment images of the VITON-HD
dataset. In this case, since this dataset only contains upper-
body clothes, we limit the table noun chunks to the ones
describing upper-body garments.

Extracting Sketches. The introduction of garment sketches
can provide valuable design details that are not easily dis-
cernible from text alone. In this way, the dataset can pro-
vide a more accurate and comprehensive representation of
the garments, leading to improved quality and better con-
trol of the generated design details. To extract sketches
for both Dress Code and VITON-HD datasets, we employ
PiDiNet [46], a pre-trained edge detection network.

Given that the selected datasets have originally been in-
troduced for virtual try-on, they consist of both paired and
unpaired test sets. While for the paired set we can directly
use the human parsing mask to extract the garment of inter-
est worn by the model and then feed it to the edge detec-
tion network, for the unpaired set we need to first create a
warped version of the in-shop garment matching the body
pose and shape of the target model. Following virtual try-on
methods [50,55], we train a geometric transformation mod-
ule that performs a thin-plate spline transformation [38] of
the input garment and then refines the warped result using a
U-Net model [40]. From each warped garment, we extract
the sketch image enabling the use of the proposed solution
even in unpaired settings.

4.2. Comparison with Other Datasets

The only two text-to-image generation datasets avail-
able in the fashion domain [19, 59] are both based on
images from the DeepFashion dataset [24]. While the
dataset introduced in [59] contains short textual descrip-
tions, DeepFashion-Multimodal [19] is annotated with at-
tributes (e.g. category, color, fabric, etc.) that can be com-
posed in longer captions. In Table 1, we summarize the
main statistics of the publicly available datasets textual
annotations compared with those of our newly extended
datasets. As can be seen, our datasets contain more variety
in terms of textual items and words, confirming the appro-
priateness of our annotation procedure and enabling a more
personalized control of the generation process. Also, it is
worth noting that the other datasets have no in-shop gar-
ment images making them difficult to employ in our case.

5. Experimental Evaluation
5.1. Implementation Details and Competitors

Training and Inference. All models are trained on the
original splits of the Dress Code Multimodal and VITON-

HD Multimodal datasets on a single NVIDIA A100 GPU
for 150k steps, using a batch size of 16, a learning rate
of 10−5 with a linear warmup for the first 500 iterations,
and AdamW [25] as optimizer with weight decay 10−2.
To speed up training and save memory, we use mixed
precision [28]. We set both the fraction of steps condi-
tioned by the sketch and the portion of masked conditions
during training to 0.2. During inference, we employ the
DDIM [45] with 50 steps as noise scheduler and set the
classifier-free guidance parameter α to 7.5.

Baselines and Competitors. As first competitor, we use
the out-of-the-box implementation of the inpainting Sta-
ble Diffusion pipeline3 provided by Huggingface. More-
over, we adapt two existing models, namely FICE [35] and
SDEdit [27], to work on our setting. In particular, we re-
train all main components of the FICE model on the newly
collected datasets. We employ the same resolution used by
the authors (i.e. 256 × 256), downsampling each image to
256 × 192 and applying padding to match the desired size
(which is then removed during evaluation). To compare
our model with a different conditioning strategy, we em-
ploy the approach proposed in [27] using our model trained
only with text and human poses as input modalities and per-
form the sketch guidance using as starting latent variable the
sketch image with added random noise. Following the orig-
inal paper instructions, we use 0.8 as the strength parameter.

5.2. Evaluation Metrics

To assess the realism of generated images, we employ
the Fréchet Inception Distance (FID) [16] and the Kernel
Inception Distance (KID) [4]. For both metrics, we adopt
the implementation proposed in [34]. Instead, to evaluate
the adherence of the image to the textual conditioning in-
put, we employ the CLIP Score (CLIP-S) [15] provided in
the TorchMetrics library [9], using the OpenCLIP ViT-H/14
model as cross-modal architecture. We compute the score
on the inpainted region of the generated output pasted on a
224× 224 white background.

Pose Distance (PD). We propose a novel pose distance met-
ric that measures the coherence of human body poses be-
tween the generated image and the original one estimating
the distance between the human keypoints extracted from
the original and generated images. Specifically, we employ
the OpenPifPaf [22] human pose estimation network and
compute the ℓ2 distance between each pair of real-generated
corresponding estimated keypoints. We only consider the
keypoints involved in the generation (i.e. that falls in the
mask M ) and weigh each keypoint distance with the detec-
tor confidence to take into account any estimation errors.

Sketch Distance (SD). To quantify the adherence of the
generated image to the sketch constraint, we propose a

3https://huggingface.co/runwayml/stable-diffusion-inpainting
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Modalities Dress Code Multimodal VITON-HD Multimodal

Model Resolution Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓ FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

Paired setting
Stable Diffusion [39] 256×192 ✓ 17.05 9.28 28.71 4.62 - 15.18 6.38 30.40 5.04 -
FICE [35] 256×192 ✓ ✓ 30.63 23.54 28.72 6.87 - 49.44 44.74 29.26 6.37 -
MGD (ours) 256×192 ✓ ✓ 5.57 1.67 31.33 2.37 - 10.11 3.14 31.85 2.90 -

Paired setting
Stable Diffusion [39] 512×384 ✓ 17.43 9.48 29.18 9.24 0.467 16.28 6.56 30.70 10.78 0.410
SDEdit [27] 512×384 ✓ ✓ ✓ 10.19 5.03 29.21 5.41 0.398 13.07 4.66 30.58 6.76 0.306
MGD (ours) 512×384 ✓ ✓ ✓ 5.74 2.11 31.68 4.72 0.374 10.60 3.26 32.39 5.94 0.253

Unpaired setting
Stable Diffusion [39] 256×192 ✓ 19.11 10.69 27.53 5.07 - 17.37 7.55 28.40 5.50 -
FICE [35] 256×192 ✓ ✓ 34.14 26.86 26.03 7.15 - 52.74 48.58 25.94 6.58 -
MGD (ours) 256×192 ✓ ✓ 7.01 2.19 29.58 2.96 - 11.54 3.18 29.95 3.30 -

Unpaired setting
Stable Diffusion [39] 512×384 ✓ 19.55 10.80 28.02 9.89 0.582 18.45 7.87 28.74 11.60 0.561
SDEdit [27] 512×384 ✓ ✓ ✓ 11.38 5.69 27.10 6.16 0.509 15.12 5.67 28.61 7.35 0.406
MGD (ours) 512×384 ✓ ✓ ✓ 7.73 2.82 30.04 6.79 0.458 12.81 3.86 30.75 7.22 0.317

Table 2: Quantitative results on the Dress Code Multimodal and VITON-HD Multimodal datasets for both paired and un-
paired settings .

Modalities Dress Code Multimodal

Model Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

✓ 6.19 2.15 31.79 6.16 0.411
✓ ✓ 6.31 2.33 31.67 5.31 0.405

MGD (ours) ✓ ✓ ✓ 5.74 2.11 31.68 4.72 0.374

Modalities VITON-HD Multimodal

Model Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

✓ 11.39 3.52 32.16 7.83 0.339
✓ ✓ 11.07 3.36 32.27 6.77 0.318

MGD (ours) ✓ ✓ ✓ 10.60 3.26 32.39 5.94 0.253

Table 3: Performance analysis on the paired setting of both
datasets as input modalities vary.

novel sketch distance metric. To compute the score, we ex-
tract the segmentation map of the original and generated
garments using an off-the-shelf clothing segmentation net-
work4. We then use the segmented garment area to extract
garment sketches using the PIDInet [46] edge detector net-
work. The final score is the mean squared error between
these sketches, weighting the per-pixel results on the inverse
pixel frequency of the activated pixels. More details about
these proposed metrics can be found in the supplementary.

5.3. Experimental Results

Comparison with Other Methods. We test our pro-
posal for the paired and unpaired settings of the considered
datasets. In the former, the conditions (e.g. text, sketch)
refers to the garment the model is wearing, while in the lat-
ter, the in-shop garment differs from the worn one. In Ta-
ble 2, we report the quantitative results on Dress Code Mul-
timodal and VITON-HD Multimodal in comparison with

4https://github.com/levindabhi/cloth-segmentation

Modalities Realism Multimodal Coherence

Text Pose Sketch Stable Diff. FICE SDEdit Stable Diff. FICE SDEdit

D
re

ss
C

od
e

M
.

✓ 70.82 - - 65.32 - -
✓ ✓ 70.73 96.26 - 65.15 84.48 -
✓ ✓ ✓ 70.29 - 52.54 65.38 - 66.23

V
IT

O
N

H
D

M
. ✓ 67.03 - - 57.76 - -

✓ ✓ 66.17 93.84 - 73.73 83.46 -
✓ ✓ ✓ 60.71 - 53.44 69.47 - 59.34

Table 4: User study results on the unpaired setting of both
datasets. We report the percentage of times an image from
MGD is preferred against a competitor. Comparisons with
FICE [35] are performed at 256× 192 resolution.

the aforementioned competitors. As can be seen, the pro-
posed MGD model consistently outperforms competitors,
in terms of realism (i.e. FID and KID) and coherency with
input modalities (i.e. CLIP-S, PD, and SD). In particu-
lar, when considering low-resolution results, we notice that
FICE [35] can produce images fairly consistent with the
text conditioning, albeit less realistic than other methods.
While Stable Diffusion [39] enhances image realism, it fails
to preserve the input model’s pose due to the lack of pose
information in the inputs. It is noteworthy that in this case,
we compare the results of our model only using text and
pose map as conditioning since both considered competi-
tors are not conditioned on sketches. For this reason, we
do not report the results in terms of sketch distance for low-
resolution images.

In the high-resolution setting, we evaluate instead our
MGD method using all multimodal conditions (i.e. text,
pose map, and sketch) as input. In this case, we com-
pare MGD with Stable Diffusion [39] plus SDEdit [27],
where we use our text-pose conditioned denoising network
as SDEdit backbone. Our findings indicate that Stable Dif-
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SDedit MGD (ours) SDedit MGD (ours)

mul�color black 
floral embroi-
dered gown

red and black floral 
print

slim straps floral 
dress

blue navy side 
stripe trousers

navy blue track 
pants

track pants

hawaiian print

tropical looking 
shirt

hawaiian black 
short sleeve shirt

green pussy-bow 
de chine blouse

green pe�te bow 
blouse

blue �e-front shirt

Color fidelity Shape fidelity

Figure 4: Sample generated images on Dress Code Multimodal and VITON-HD Multimodal (bottom left) using all multi-
modal inputs.

fusion performs worse in terms of the pose distance than
both SDEdit and MGD, owing to the lack of pose informa-
tion in the inputs. It is noteworthy that SDEdit performs
worse than our model in all metrics. We attribute this be-
havior to the way sketch conditioning happens. In SDEdit,
it occurs only at the beginning by initializing zt using the
sketch image with added noise according to the condition-
ing strength, while our model conditions the denoising pro-
cess in multiple steps, depending on the sketch conditioning
parameter. Qualitative results reported in Fig. 4 highlight
how our model better follows the given conditions and gen-
erate high-realistic images.

To validate our results based on human judgment, we
conduct a user study that evaluates both the realism of the
generation and the adherence to multimodal inputs. Over-
all we collect about 7k evaluations involving more than 150
users. Additional details are reported in the supplementary.
Table 4 shows the user study results. Also in this case our
model outperforms the competitors, thus confirming the ef-
fectiveness of our proposal.

Varying Input Modalities. In Table 3, we study the be-
havior of our MGD model when the input modalities are
masked (i.e. where we feed the model with a zero tensor in-
stead of the considered modality). In particular, we focus
on the CLIP-S for text adherence and on the newly pro-
posed pose and sketch distances for the pose and sketch co-
herency, respectively. Notice that the text input anchors the
CLIP-S metrics of all experiments and makes them compa-
rable in all cases. Starting from the fully conditioned model
(i.e. text, pose, sketch), we mask the sketch. As the decrease

Dress Code Multimodal

Uncond. Portion Sketch Cond. FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

0.1 1.0 9.64 3.76 30.24 7.66 0.459
0.2 1.0 8.62 3.24 29.06 7.51 0.430
0.3 1.0 10.93 4.78 28.47 7.69 0.432

0.2 0.8 8.56 3.28 29.31 7.32 0.433
0.2 0.6 8.43 3.21 29.51 7.32 0.436
0.2 0.4 8.11 3.00 29.79 7.13 0.440
0.2 0.2 7.73 2.82 30.04 6.79 0.458
0.2 0.0 7.82 2.85 29.93 6.26 0.519

Table 5: Ablation analysis of our complete model varying
the unconditioning portion during training and the sketch
conditioning steps. Results refer to the unpaired setting.

of the sketch distance in Table 3 confirms, this input actu-
ally influences the generation process of our model in both
the considered datasets. Also, this modality slightly affects
the pose distance as the sketch implicitly contains informa-
tion about the model’s body pose. We further mask the pose
map input and compare the output with previous results. In
this case, we can also notice a consistent difference with
the text-only conditioned model, according to all metrics
except CLIP-S as expected. These results confirm that our
MGD model can effectively deal with the conditions in a
disentangled way, making them optional.

Unconditional Training and Sketch Conditioning. In Ta-
ble 5, we inquire about the fully conditioned network per-
formance according to the variance of the portion of uncon-
ditional training. Additionally, we evaluate the results by
varying the fraction of sketch conditioning steps. As can be
seen, the best results are achieved by using 0.2 for both pa-
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rameters. In particular, for unconditional training, we train
three different models (i.e. with 0.1, 0.2, and 0.3). When
evaluating the sketch conditioning parameter, we test our
model with values between 0 and 1 with a stride of 0.2. It is
worth noting that the sketch distance consistently decreases
as the number of sketch conditioning steps increases, show-
ing the robustness of the approach.

6. Conclusion
The Multimodal Garment Designer proposed in this pa-

per is the first latent diffusion model defined for human-
centric fashion image editing, conditioned by multimodal
inputs such as text, body pose, and sketches. The novel
architecture, trained on two new semi-automatically anno-
tated datasets and evaluated with standard and newly pro-
posed metrics, as well as by user studies, is very promising.
The result is one of the first successful attempts to mimic the
designers’ job in the creative process of fashion design and
could be a starting point for a capillary adoption of diffusion
models in creative industries, oversight by human input.
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A. Dress Code Multimodal and VITON-HD
Multimodal Datasets

In this section, we give additional details about the
dataset collection and annotation process and provide statis-
tics and further examples of the collected datasets.

A.1. Data Preparation

Before extracting noun chunks from the textual sen-
tences of FashionIQ [53] and Fashion200k [12], we per-
form word lemmatization to reduce each word to its root
form. Such pre-processing stage is crucial for the Fash-
ionIQ dataset, as the captions do not describe a single gar-
ment but instead express the properties to modify in a given
image to match its target. Fig. 5 shows two examples of
FashionIQ annotations.

We use the spaCy NLP toolkit5 to extract noun chunks
from textual sentences. To facilitate prompt engineering
at a later stage, we remove the articles at the beginning
of each noun chunk. Subsequently, we filter out all noun
chunks starting with or containing special characters and
keep unique elements. Table 6 reports detailed statistics
about the number of unique captions and extracted noun
chunks from which we start the annotation.
Textual Prompts. As described in the main paper, we rely
on the cosine similarity between CLIP-based image and text
embeddings to associate each garment with the 25 most rep-
resentative noun chunks. We exploit prompt ensembling to
perform such zero-shot association as it is shown in [36]
that this technique improves performance.

The employed textual prompts are:
• a photo of a [noun chunk],
• a photo of a nice [noun chunk],
• a photo of a cool [noun chunk],
• a photo of an expensive [noun chunk],
• a good photo of a [noun chunk],
5https://spacy.io/

Figure 5: Examples of FashionIQ data type.

Unique Captions Unique Noun Chunks

Dataset Upper Lower Dresses Upper Lower Dresses

FashionIQ [53] 27,339 0 15,101 7,801 0 3,592
Fashion200k [12] 25,959 11,022 16,694 22,898 13,420 15,890

Table 6: Number of unique captions and noun chunks for
each category of the FashionIQ and Fashion200k datasets.

• a bright photo of a [noun chunk],
• a fashion studio shot of a [noun chunk],
• a fashion magazine photo of a [noun chunk],
• a fashion brochure photo of a [noun chunk],
• a fashion catalog photo of a [noun chunk],
• a fashion press photo of a [noun chunk],
• a yoox photo of a [noun chunk],
• a yoox web image of a [noun chunk],
• a high-resolution photo of a [noun chunk],
• a cropped photo of a [noun chunk],
• a close-up photo of a [noun chunk],
• a photo of one [noun chunk].

A.2. Annotation Tool for Fine-Grained Annotation

We develop a custom annotation tool using the Django
and Angular web frameworks to ease and speed up the fine-
grained annotation process. Fig. 6 depicts the user inter-
face. In the annotation phase, users are provided with both
model’s image and the corresponding in-shop garment and
should select the three most representative noun chunks per
item (Fig. 6a). If the automatic selection process fails to
suggest three correct noun chunks, the user can manually
insert them (Fig. 6b).

A.3. Coarse-Grained Annotation

After completing the manual annotation process on
Dress Code, we obtain 26,400 different model-garment
pairs (with 8,800 items per category), each associated with
three different noun chunks. To annotate the remaining
27,392 items of Dress Code Multimodal and the 13,679
items of VITON-HD Multimodal, we leverage the manu-
ally annotated image-text pairs and finetune the OpenCLIP
ViT-B/32 [52] model pre-trained on the English portion of
the LAION-5B dataset.
CLIP Finetuning. We finetune both encoders of the Open-
CLIP model using a single NVIDIA A100 GPU for 400
steps, with a batch size of 2048 and a learning rate of 10−6.

∗Equal contribution.
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(a) (b)
Figure 6: User interface of the custom annotation tool. In (a) the user can select the noun chunks among the proposed ones,
while in (b) the user can manually annotate the garment.

As optimizer, we use AdamW [25] with a weight decay
of 0.2. We use mixed precision [28] to speed up training
and save memory. During the training process, we mon-
itor the model performance using the top-3 accuracy met-
ric on the test split of the Dress Code Multimodal dataset.
We choose this metric intending to associate each image
with three distinct noun chunks. The out-of-the-box model
achieves a top-3 accuracy of 12.95%, which improves to
16.60% after finetuning. The OpenCLIP ViT-g/14 model
instead achieves a top-3 accuracy of 16.21%, while being
computationally heavier than the ViT-B/32 version. Since
the ViT-g/14 model predicts the set of noun chunks from
which we extract the ground-truth, the actual difference in
performance between the finetuned ViT-B/32 model and the
out-of-the-box ViT-g/14 model could be even higher.

A.4. Extracting Sketches

As mentioned in the main paper, we train a warping
module to generate input sketches for the unpaired setting
(i.e. when we give as input the multimodal information cor-
responding to a garment different from the one originally
worn by the model). In particular, our method involves the
transformation of a given in-shop garment C ∈ RH×W×3

into a warped image of the same garment that fits the model
of a target image I . We employ the warping module pro-
posed in [50], refining the results with a U-Net based com-
ponent [40].

The warping module computes a correlation map be-
tween the encoded representations of the in-shop garment
C and a cloth-agnostic person representation composed of
the pose map P ∈ RH×W×18 and the masked model image
IM ∈ RH×W×3. We use two separate convolutional net-
works to obtain these encoded representations. Based on the
computed correlation map, we predict the spatial transfor-
mation parameters θ of a thin-plate spline geometric trans-
formation [38] (i.e. TPSθ). We then use the θ parameters
to compute the coarse warped garment Ĉ starting from the

Images Unique Noun Chunks

Dataset Ann. Split Upper Lower Dresses Upper Lower Dresses

Dress Code M. F

Train 7,000 7,000 7,000 4,751 5,914 4,410
Test 1,800 1,800 1,800 2,337 2,861 2,144
∪ 8,800 8,800 8,800 5,284 6,509 4,915
∩ - - - 1,804 2,266 1,639

Dress Code M. C

Train 6,563 151 20,666 7,198 320 8,650
Test 0 0 0 0 0 0
∪ 6,563 151 20,666 7,198 320 8,650
∩ - - - 0 0 0

Dress Code M. F+C

Train 13,563 7,151 27,666 9,163 6,037 9,465
Test 1,800 1,800 1,800 2,337 2,861 2,144
∪ 15,363 8,951 29,466 9431 6,597 9,568
∩ - - - 2,069 2,301 2,041

VITON-HD M. C

Train 11,647 - - 4,823 - -
Test 2,032 - - 2,149 - -
∪ 13,679 - - 5,143 - -
∩ - - - 1,829 - -

Table 7: Number of images and unique noun chunks per
category for both Dress Code Multimodal and VITON-HD
Multimodal. (F) indicates the fine-grained annotation while
(C) indicates the coarse-grained annotation.

in-shop garment C as follows:

Ĉ = TPSθ(C). (5)

To refine the result, we employ a U-Net model that takes as
input the concatenation of the coarse warped garment Ĉ, the
pose map P , and the masked model image IM , and predicts
the refined warped garment C̃.

We train this model on the training set of both Dress
Code Multimodal and VITON-HD Multimodal using a
combination of an L1 loss between generated and target in-
shop garments and a perceptual loss (also known as VGG
loss [20]) to compute the difference between the feature
maps of generated and target garments extracted with a
VGG-19 [43]. We train with a resolution of 256 × 192,
Adam [21] as optimizer with β1 = 0.5, β2 = 0.99, and a
learning rate equal to 10−4. We train the network on the
VITON-HD dataset for 30 epochs, while the training on the
Dress Code dataset converges after 80 epochs.
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Figure 7: Annotated images per category on Dress Code
Multimodal.

A.5. Additional Statistics and Annotated Samples

Table 7 summarizes the number of images and unique
noun chunks for each category of Dress Code Multimodal
and VITON-HD Multimodal. The table shows that the
datasets share noun chunks between the train and test set
(∩). This behavior is likely due to the limited capacity of
the textual modality to represent the whole semantic infor-
mation of the image. Fig. 7 instead shows the number of
samples for each category highlighting the different anno-
tation strategies on Dress Code Multimodal.

In Fig. 8, we report the word clouds extracted from
the textual annotations, representing the most frequently
used words in the collected noun chunks for each category
of Dress Code Multimodal and VITON-HD Multimodal.
From this visualization, we can notice that the frequency
of the terms varies according to the garment category, and
the semantic richness of our annotations is consistent across
different garment types.

In Fig. 11 and Fig. 12, we report samples from the fine-
grained and coarse-grained subsets of Dress Code Multi-
modal, respectively. Instead, in Fig. 13, we show additional
examples extracted from VITON-HD Multimodal.

B. Evaluation Metrics

This section provides additional details about the evalu-
ation metrics used in our experiments. We first give some
clarifications about the CLIP-S metric and then present an
accurate formulation of the proposed sketch distance and
pose distance metrics.

CLIP-S. The CLIP score [15] is a well-known metric to
evaluate the similarity between images and textual sen-
tences. In our setting, we employ this metric to assess the
coherence of the generated images with respect to the cor-
responding textual inputs used to condition the generation

(a) (b)

(c) (d)
Figure 8: Vocabulary of the frequent words scaled by fre-
quency for dresses (a), lower-body clothes (b), upper-body
clothes (c) of Dress Code Multimodal and clothing items of
VITON-HD Multimodal (d).

process. As mentioned in the main paper, our implemen-
tation relies on the CLIP-S of the TorchMetrics library [9]
and adopts the ViT-H/14 trained on LAION-2B as the CLIP
model. Specifically, we crop the generated image using the
bounding box used to mask it and paste the resulting crop
on a white background, obtaining a final resolution equal to
224× 224. The adopted metric is defined as follows:

CLIP-S(I, Y ) = max(100 ∗ cos(EĨ , EY ), 0), (6)

where EĨ represents the CLIP embedding of the generated
portion of the image Ĩ pasted on white background, EY

represents the CLIP embedding for the caption Y , and cos
is the cosine similarity. We calculate the cosine similarity
between the image and caption embeddings and scale the
result by a factor of 100. If the cosine similarity is negative,
then CLIP-S is zero.
Pose Distance (PD). To measure the coherence of human-
body poses between the generated image and the original
one, we propose a novel pose distance metric that estimates
the distance between human keypoints extracted from the
original and the generated images. Given a ground-truth im-
age I and a generated image Ĩ , we extract human keypoints
from each of them using the keypoint extraction network K
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(i.e. in our case, we use OpenPifPaf [22]) and identify the
set of keypoints falling in the mask M as K(·)M . We com-
pute the final score with an ℓ2 distance between each pair
of real-generated corresponding keypoints (i.e. k ∈ K(I)M
and k̃ ∈ K(Ĩ)M , respectively), weighting each keypoint
distance with the detector confidence to consider possible
estimation errors. Formally, our pose distance metric is de-
fined as follows:

PD(I, Ĩ) =

∑
k∈K(I)M
k̃∈K(Ĩ)M

√
(kx − k̃x)2 + (ky − k̃y)2 · CFkk̃

∑
kk̃ CFkk̃

,

(7)
where, for each pair of real-generated keypoints, CFkk̃ is
1 if the confidence of the detector K on both keypoints is
greater or equal to 0.5, and 0 otherwise.
Sketch Distance (SD). To evaluate the adherence of the
generated images to the constraints imposed by the input
sketch, we propose a new sketch distance metric. To com-
pute the metric, we first extract the ground-truth and the
generated garments label maps using an off-the-shelf se-
mantic segmentation model6. We segment the garment ac-
cording to its category and paste it on a white background
of shape 512 × 384. We refer to these new images with IS
and ĨS , respectively. Then, we extract the garment sketches
of both the ground-truth and the generated images using an
edge detector network Edge (i.e. PIDInet [46]). Finally,
we compute the mean squared error between the extracted
sketches, weighting the per-pixel results on the inverse fre-
quency of the activated pixels. Formally, the introduced
sketch distance metric is defined as follows:

SD(IS , ĨS) = MSE
(
Edge(IS), Edge(ĨS)

)
∗ p, (8)

where p is the inverse pixel frequency. It is noteworthy that
sketch thresholding could be applied before distance com-
putation. Nevertheless, we argue that avoiding threshold-
ing enables an effective comparison of hand-drawn ground-
truth grayscale sketches. This approach can facilitate the
evaluation of methods that generate images conditioned us-
ing the sketch. Therefore, we think the proposed metric can
be a valuable tool for comparing sketch-guided generative
architectures.

C. User Study
As mentioned in the main paper, we conduct a user study

to evaluate the realism of generated images and their adher-
ence to the given multimodal inputs, comparing our results
with those from the considered competitors. To this aim,
we develop a custom web interface presenting two different
surveys. The former (Fig. 9a) assesses the realism of the

6https://github.com/levindabhi/cloth-segmentation

(a)

(b)

Figure 9: User study interface, where (a) corresponds to the
realism evaluation and (b) refers to the coherence analysis
between generated images and the given multimodal inputs.

generated output asking the user to select for each compar-
ison the image that seems more realistic. In the latter (Fig-
ure 9b), given the model’s image, the set of noun chunks
describing the garment, and the sketch, the user is asked to
select which of the two proposed outputs looks more coher-
ent with the multimodal inputs also taking into account the
model’s body pose. Overall, we collect around 7k evalua-
tions, 3.5k for each test, and involving more than 150 users.

D. Additional Results

In this section, we provide additional experimental re-
sults to understand the strengths and limitations of our ap-
proach. Table 8 extends Table 2 of the main paper show-
ing quantitative results on each garment category of Dress
Code Multimodal. Since each category contains only 1,800
images, the FID score presents a high variance in the re-
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Modalities Upper-body Lower-body Dresses

Model Resolution Text Keypoints Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓ FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓ FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

Paired setting
Stable Diff. [39] 256×192 ✓ 22.86 9.73 28.31 4.29 - 28.78 13.93 26.41 4.97 - 36.31 20.74 27.84 5.67 -
FICE [35] 256×192 ✓ ✓ 46.41 32.26 28.58 7.46 - 41.68 27.22 28.14 7.54 - 34.06 20.58 29.47 6.06 -
MGD (ours) 256×192 ✓ ✓ 11.88 2.82 31.48 1.91 - 10.24 1.55 30.50 2.58 - 11.87 2.03 32.05 2.57 -

Paired setting
Stable Diff. [39] 512×384 ✓ 21.00 8.59 30.17 7.95 0.310 28.40 14.48 28.02 9.96 0.345 33.12 17.39 29.36 9.86 0.450
SDEdit [27] 512×384 ✓ ✓ ✓ 15.78 5.52 29.73 4.21 0.222 16.64 6.07 29.00 6.51 0.256 21.53 9.02 28.89 5.67 0.270
MGD (ours) 512×384 ✓ ✓ ✓ 12.42 3.71 31.90 3.72 0.190 10.70 2.01 31.10 5.70 0.210 11.38 1.89 32.02 4.93 0.194

Unpaired setting
Stable Diff. [39] 256×192 ✓ 22.86 9.73 28.31 4.29 - 28.78 13.93 26.41 4.97 - 36.31 20.74 27.84 5.67 -
FICE [35] 256×192 ✓ ✓ 49.77 35.37 26.48 7.64 - 44.94 30.39 25.42 7.84 - 39.04 25.27 26.14 6.39 -
MGD (ours) 256×192 ✓ ✓ 14.50 3.48 29.24 2.39 - 13.70 2.48 29.09 3.32 - 13.72 2.50 30.37 3.17 -

Unpaired setting
Stable Diff. [39] 512×384 ✓ 24.23 10.39 28.64 8.59 0.413 30.90 15.38 27.03 10.43 0.453 35.96 19.94 28.37 10.60 0.609
SDEdit [27] 512×384 ✓ ✓ ✓ 17.86 6.50 27.36 4.78 0.357 19.16 6.85 27.08 7.53 0.399 22.97 9.98 26.85 6.42 0.411
MGD (ours) 512×384 ✓ ✓ ✓ 15.99 4.50 29.76 5.41 0.291 14.82 2.81 29.96 7.96 0.289 14.71 3.63 30.41 7.15 0.252

Table 8: Category-wise quantitative results on the Dress Code Multimodal dataset.

Dress Code Multimodal

Sketch Cond. FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

1.0 5.44 1.82 31.03 4.43 0.363
0.8 5.65 1.96 31.17 4.42 0.364
0.6 5.73 2.11 31.31 4.50 0.365
0.4 5.80 2.17 31.44 4.51 0.368
0.2 5.74 2.11 31.68 4.72 0.374
0.0 6.31 2.33 31.67 5.31 0.405

Table 9: Ablation study by varying the sketch conditioning
steps on the paired setting of Dress Code Multimodal.

VITON-HD Multimodal

Sketch Cond. FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

1.0 13.01 4.00 30.32 7.05 0.225
0.8 12.75 3.73 30.46 7.11 0.250
0.6 12.76 3.75 30.53 7.13 0.263
0.4 12.71 3.67 30.56 7.12 0.280
0.2 12.81 3.86 30.75 7.22 0.317
0.0 12.40 3.36 30.34 7.53 0.435

Table 10: Ablation study by varying the sketch conditioning
steps on the unpaired setting of VITON-HD Multimodal.

sults [4], while the KID metric presents more accurate re-
sults. Nevertheless, our method outperforms all competitors
in all metrics except for the pose metrics in the unpaired
setting. This behavior is due to the imperfect match of the
predicted warped unpaired sketches and the model’s body
shape and pose. In fact, from the analysis of the sketch con-
ditioning steps in the unpaired setting (Table 5 of the main
paper), we can see that the pose distance directly correlates
with the sketch conditioning parameter, while in the paired
one (Table 9) the pose distance metric decreases as the num-
ber of sketch conditioning steps increases. Instead, when
evaluating the results on VITON-HD Multimodal, the pose
distance metric in the unpaired setting decreases (Table 10).
We believe this behavior relates to the size of the worn gar-
ment in this last dataset, which facilitates garment warping.
In fact, VITON-HD features half-body images, while Dress

Modalities Dress Code Multimodal

Model Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

✓ 7.61 2.54 30.17 7.22 0.527
✓ ✓ 7.82 2.85 29.93 6.26 0.519

MGD (ours) ✓ ✓ ✓ 7.73 2.82 30.04 6.79 0.458

Modalities VITON-HD Multimodal

Model Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

✓ 12.73 3.59 30.24 8.64 0.643
✓ ✓ 12.40 3.36 30.34 7.53 0.435

MGD (ours) ✓ ✓ ✓ 12.81 3.86 30.75 7.22 0.317

Table 11: Performance analysis on the unpaired setting of
both datasets as input modalities vary.

Code contains full-body target models.
In Table 11, we show the performance of our MGD

model when masking different input modalities. In this
case, we report the results on the unpaired setting of both
datasets. As it can be seen, evaluation metrics measuring
the realism of the generation (i.e. FID and KID) are com-
parable among different cases, while the pose distance and
sketch distance metrics correlate in general with the given
input (i.e. with the pose map and the garment sketch, respec-
tively). Moreover, in this case, the warped in-shop garment
not fitting the model’s body shape affects the pose distance
metric for the Dress Code Multimodal dataset.

Finally, in Table 12 we report a comparison with the
concurrent work ControlNet [57] adapted to work with the
Stable Diffusion inpaint denoising network. Following the
original paper, we only condition ControlNet on text plus an
additional modality (i.e. pose or sketch). It is worth noting
that across all configurations, MGD outperforms Control-
Net by a significant margin.

Qualitative results. We also show additional qualitative re-
sults for both datasets. Specifically, in Fig. 14 and Fig. 15,
we compare images generated by our approach and com-
petitors using a resolution of 512 × 384, for Dress Code
Multimodal and VITON-HD Multimodal, respectively. In-
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Modalities Dress Code Multimodal VITON-HD Multimodal

Model Resolution Text Pose Sketch FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓ FID ↓ KID ↓ CLIP-S ↑ PD ↓ SD ↓

Paired setting
ControlNet [57] 512×384 ✓ ✓ 18.36 9.82 29.00 7.46 0.462 19.08 9.35 30.03 7.72 0.392
MGD (ours) 512×384 ✓ ✓ 6.31 2.33 31.67 5.31 0.405 11.07 3.36 32.27 6.77 0.318

ControlNet [57] 512×384 ✓ ✓ 27.23 19.01 27.07 7.54 0.436 25.44 17.05 28.31 8.16 0.298
MGD (ours) 512×384 ✓ ✓ 5.72 2.15 31.69 4.94 0.373 10.64 3.26 32.31 6.18 0.255

Unpaired setting
ControlNet [57] 512×384 ✓ ✓ 20.66 11.58 27.57 8.15 0.577 21.03 10.34 28.11 8.38 0.534
MGD (ours) 512×384 ✓ ✓ 7.82 2.85 29.93 6.26 0.519 12.40 3.36 30.34 7.53 0.435

ControlNet [57] 512×384 ✓ ✓ 29.61 20.83 25.75 9.74 0.544 27.41 18.66 26.63 9.53 0.416
MGD (ours) 512×384 ✓ ✓ 7.65 2.70 30.21 7.50 0.456 12.65 3.59 30.69 7.49 0.320

Table 12: Performance comparison with ControlNet on the Dress Code Multimodal and VITON-HD Multimodal datasets for
both paired and unpaired settings.
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Figure 10: Time window conditioned examples on Dress
Code Multimodal. We report qualitative results fixing the
sketch conditioning steps to around a third of diffusion steps
and varying the starting conditioning timestep (i.e. tstart =
0, 16, 34).

stead, in Fig. 16 and Fig. 17, we report low-resolution qual-
itative comparisons. Fig. 19 shows some qualitative re-
sults varying the sketch conditioning parameter. Increas-
ing the number of sketch conditioning steps leads to images
that better follow the given sketch while slightly reducing
the realism of the generated garments. Finally, we inves-
tigate the conditioning contribution in various time win-
dows in Fig. 10. We perform this experiment by fixing
the sketch conditioning steps to around a third of diffu-
sion steps and varying the starting conditioning timestep
(i.e. tstart = 0, 16, 34). Qualitative results show that start-
ing the sketch conditioning in the central (i.e. tstart = 16,
tend = 34) or final denoising steps (i.e. tstart = 34,
tend = 50) leads the model to generate images that do not
follow the input sketch and present artifacts.

Limitations and failure cases. Fig. 20 shows some fail-
ure cases of the proposed approach. In the first row, the
first two examples show that our model sometimes fails to
generate hands accurately when they occupy a limited area
within the source image. This behavior is intrinsic in LDMs

family [39] and derives from the high spatial compression
nature of the latent space (8× for each spatial dimension).
Instead, the third example of the first row and the first two
samples of the second row highlight the dependence of our
model performance from the given sketch. When the geo-
metric warping module fails to generate a sketch able to fit
the model’s shape, the generation task fails as well, creating
unwanted artifacts (e.g. a sketch may be smaller than the
model’s body shape as in the third example of the first row,
resulting in an artifact near the model’s left hand).
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Figure 11: Sample images and multimodal data from our newly collected Dress Code Multimodal dataset (fine-grained
textual annotations).

17



asymmetrical 
floral gown

mul�color floral 
print evening gown

conver�ble strapless 
floral gown

mul�color bear 
t-shirt

mul�color red 
t-shirt

red a�la peasant 
tee

pink racerback tank 
pe�te

pink racerback tank

pink graham spen-
cer tank

mul�color print 
shorts

mul�color pants 
street print

mul�color animal 
printed pants

blue asymmetric 
tartan skirt

blue prisca modern 
plaid miniskirt

blue wrap-effect 
embroidered mini 

skirt

Figure 12: Sample images and multimodal data from our newly collected Dress Code Multimodal dataset (coarse-grained
textual annotations).
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Figure 13: Sample images and multimodal data from our newly collected VITON-HD Multimodal dataset (coarse-grained
textual annotations).
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Figure 14: Qualitative comparison on Dress Code Multimodal. From left to right: model’s image, input sketch, pose map,
image generated by Stable Diffusion [39], image generated by SDedit [27], image generated by MGD (ours), and noun
chunks.
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Figure 15: Qualitative comparison on VITON-HD Multimodal. From left to right: model’s image, input sketch, pose map,
image generated by Stable Diffusion [39], image generated by SDedit [27], image generated by MGD (ours), and noun
chunks.

21



131.224 mm

blue floral print 
palazzo pants
blue wide-leg 

trousers
blue printed 

palazzo pants

natural geomet-
ric print trou-

sers
orange sammy 

trousers
red printed 

cropped pants

flared sleeves
white blouse 

bu�on
white mandarin 

collar

beige 3/4 
sleeves

puffy sleeve

beige 
cold-shoulder 

top

black v-necked 
fi�ed dress

black tailored 
short sleeved 

dress
knee length 
black dress

black dress lace 
embroidery 
mul�color

floral sleeveless 
dress

sheer floral pat-
terned dress

Figure 16: Qualitative comparison with low-resolution images on Dress Code Multimodal. From left to right: model’s image,
input sketch, pose map, image generated by Stable Diffusion [39], image generated by FICE [35], image generated by MGD
(ours), and noun chunks.
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Figure 17: Qualitative comparison with low-resolution images on VITON-HD Multimodal. From left to right: model’s
image, input sketch, pose map, image generated by Stable Diffusion [39], image generated by FICE [35], image generated
by MGD (ours), and noun chunks.
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Figure 18: Qualitative comparison of images generated by our model on Dress Code Multimodal using different conditioning
modalities. From left to right: model’s image, input sketch, pose map, image generated using only text, image generated using
text and pose map, image generated with all input modalities (i.e. text, pose map, and sketch).
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Figure 19: Qualitative results generated by MGD increasing the sketch conditioning steps.
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Figure 20: Failure cases on Dress Code Multimodal (first row) and VITON-HD Multimodal (second row).
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