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Abstract

Conditioned and composed image retrieval extend CBIR
systems by combining a query image with an additional text
that expresses the intent of the user, describing additional
requests w.r.t. the visual content of the query image. This
type of search is interesting for e-commerce applications,
e.g. to develop interactive multimodal searches and chat-
bots. In this demo, we present an interactive system based
on a combiner network, trained using contrastive learning,
that combines visual and textual features obtained from the
OpenAI CLIP network to address conditioned CBIR. The
system can be used to improve e-shop search engines. For
example, considering the fashion domain it lets users search
for dresses, shirts and toptees using a candidate start image
and expressing some visual differences w.r.t. its visual con-
tent, e.g. asking to change color, pattern or shape. The pro-
posed network obtains state-of-the-art performance on the
FashionIQ dataset and on the more recent CIRR dataset,
showing its applicability to the fashion domain for condi-
tioned retrieval, and to more generic content considering
the more general task of composed image retrieval.

1. Introduction

Content-Based Image Retrieval (CBIR) is a basic task
in computer vision and multimedia research and can be ap-
plied to general web images, as in Google Reverse Image
Search, or it can be specialized to a large number of do-
mains like landmarks [18, 37], medical images [41], cul-
tural heritage [12,31] and e-commerce, either for general e-
shopping [32,44,45] or in specific e-commerce domains like
fashion [13,22,23] or interior design [36]. These CBIR sys-
tems retrieve images from a database using an input image,
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Figure 1. Example of use of conditioned image in the fashion
domain for e-commerce application. The user can refine product
search providing details and constraints in natural language. The
system uses both visual and textual features to retrieve the desired
result.

computing a distance between the visual features extracted
from the query and the features stored in the database. Fea-
tures must be discriminative enough to deal with different
images and must be robust to a number of transformations
to also retrieve variations of the same images. A main dif-
ficulty is to overcome the proverbial semantic gap between
the low-level visual features used and the high-level mean-
ing of the images [34].

Several variations of the basic CBIR task have been pro-
posed to narrow this gap, requesting that the user provides
some additional information regarding the intent or context



of the query. Relevance feedback is one of such mecha-
nisms, where users refine iteratively the search results pro-
viding additional information on what is “similar” or “dis-
similar” according to them [28]. More recently, CBIR
systems have been extended by adding context obtained
through natural language processing, where users describe
what conditions must be met by the desired results in addi-
tion to the visual features of the query image. This defines
the task of conditioned image retrieval, proposed to imple-
ment interactive search systems for fashion [15, 40]. But
it can be effectively used in many different domains of on-
line retail, where the retrieval of relevant products could be
based on the type of product, its texture or color, shape,
material or brand [30]. Composed image retrieval, instead,
generalizes the approach composing the query as an image-
language pair, using both visual and textual modalities to
specify the user’s intent [27].

In this work, we address both conditioned retrieval ap-
plied to the fashion domain and composed retrieval applied
to general images. The proposed system is based on a net-
work that combines visual and textual features derived from
the OpenAI CLIP network. Despite the simplicity of the
network design, the system achieves state-of-the-art results
on two commonly used standard datasets, FashionIQ [40]
for the fashion domain, and CIRR [27] for more general
content. The system can be used to develop interactive e-
commerce sites and chatbots, or to improve the performance
of image search engines.

2. Related works
Several surveys provide an overview of CBIR ap-

proaches and their evolution in the past years. Zheng et
al. [46] surveyed image search approaches from 2006 to
2016, going from methods based on Scale-Invariant Feature
Transform (SIFT) to those based on Convolutional Neural
Networks (CNNs). Zhou et al. [47] surveyed CBIR re-
searches from 2003 to 2016, including methods based on
engineered and learned features. Li et al. [26] reviewed
both technological developments and practical applications
of CBIR from 2009 to 2019. Dubey [9] has recently pro-
vided a survey on CBIR methods based on deep learning of
the past decade.

Visual and language pretraining

CLIP [29] has very recently obtained remarkable results
in multi-modal zero shot learning, showing feature general-
ization of both images and text. The approach followed by
CLIP learns associations between the abundant images and
natural language supervision available on the web (using
400 millions of image-text pairs for training). Despite not
being directly optimized for a specific benchmark, it per-
forms consistently well on different tasks. Although CLIP
effectiveness is still subject of study [1], it has already been

successfully applied to different tasks like fine-grained art
classification [7], image generation [11], zero shot video re-
trieval [10], event classification [25] and visual common-
sense reasoning [39]. This work builds upon CLIP, exploit-
ing its potential for conditioned image retrieval. Other ap-
proaches to learn image-text alignment have been proposed
in [6,17]. ALIGN [17] uses a dual-encoder architecture and
is trained on a huge dataset of 1 billion image-text pairs.
Differently, the method proposed in [6] exploits contrastive
distillation, resulting in a much more data-efficient process,
requiring a training dataset that is 133× smaller than that of
CLIP.

Conditioned and combined image retrieval

This work is related to the recently introduced problem
of conditioned fashion image retrieval [40], and with the
very recent problem of composed image retrieval of generic
images [27].

Many works have addressed the first task. In [5], a trans-
former that can be seamlessly plugged in a CNN to se-
lectively preserve and transform the visual features condi-
tioned on language semantics is presented. In [38] it has
been proposed a method called Text Image Residual Gat-
ing (TIRG) that combines image and text features using
gating and residual features. In [33] the authors combine
graph neural networks and skip connections. In [24], they
use two different neural network modules, one to deal with
image style and one for image content. In [20] a Correc-
tion Network is proposed to model explicitly the difference
between the reference and target image in the embedding
space. In [8] is proposed a model called Modality-Agnostic
Attention Fusion (MAAF), designed for composed image
retrieval, treating the convolutional spatial image features
and learned text embeddings as modality-agnostic tokens,
that are then passed to a Transformer. An autoencoder-
based model, called ComposeAE, has been proposed in [2],
to learn the composition of image and text features for re-
trieval using a deep metric learning (DML) approach. In
[42] has been proposed to measure the semantic differential
relationships between images with respect to a condition-
ing query text using a method called CurlingNet. The main
components are two networks: the so-called Delivery filter,
delivers the source image to the candidate cluster according
to a given query in an embedding space, while the Sweep-
ing filter checks the attributes highlighted in the query and
learns the path from the center of valid target candidates to
the true target image. Conditional image retrieval has been
recently extended to a multi-turn conversation in [43]. The
proposed system uses ComposeAE [2] for combining im-
age and text at each turn, feeding it into a recurrent network
according to the turn order. Finally, text-conditioned im-
age retrieval has been addressed in [15], where the authors
present the SAC (Semantic Attention Composition) frame-



work that operates in two steps: firstly, the Semantic Fea-
ture Attention (SFA) module finds the salient regions of the
image w.r.t. the text and then the Semantic Feature Modi-
fication (SFM) module determines how to change the rele-
vant parts of the image compositing coarse and fine salient
image features computed by SFA with text embeddings.

Regarding the second task of composed image retrieval,
a new dataset called CIRR has been introduced in [27], con-
taining generic real-world images. The authors have also
proposed a baseline method, a novel model called CIR-
PLANT, based on transformers, that uses rich pre-trained
vision-and-language knowledge to modify visual features
conditioned on natural language. CIRPLANT has been
tested also on the FashionIQ dataset, obtaining good results.

Differently from these previous works our method ex-
plicitly considers a learned manifold of visual and text fea-
tures with the goal of learning an additive transformation
in the same space, and it does not use any kind of spatial
information.

3. The proposed method
The proposed method tackles the problem of conditional

and composed image retrieval, i.e. the query is composed
of an image and an additional textual information that ex-
presses a request from the user with respect to the image.
The goal is to find the best matching images satisfying both
the similarity constraints of the reference image and the
changes to the image requested in the additional text. To this
end, the system must be able to understand both the contents
of the image and text, and combine the textual comment to
the image content.

A schema of the system training is shown in Figure 2.
In contrast to previous works like [5, 20, 24, 33] that build
from different image and textual model, we start from the
hypothesis of having a common embedding of images and
text, obtained using CLIP features. This is motivated by
the fact noted in [29], that similar concepts expressed in
text and images tend to share similar features, or at least be
“near” in the common space.

Both image and text inputs are encoded using their re-
spective CLIP encoders into features in the common space.
The problem to be solved is that of learning a transforma-
tion from the reference image feature and input text to a
combined feature that includes both the multi-modal input
information and is as near as possible to the target image in
the common manifold. We denote this transformation as a
Combiner function and design a neural network architecture
trained to learn the correct function.

The Combiner function, depicted in Figure 3, is simple
yet more performing than more complex architectures that
we tested, obtaining a new state of the art performance in
conditioned and combined image retrieval; more details and
ablation studies on the design of the network are available in

our previous work [3]. The idea is to build an additive trans-
formation where text, image and the combination of both
are all added into the final combined feature. The training
of the system is performed with triplets of: input images,
relative captions and target images. Following [24, 33, 38]
we employ the batch-based classification (BBC) loss.

3.1. Preprocess Pipeline

The standard preprocess pipeline of CLIP is mainly com-
posed of two steps: a resize operation where the smaller side
of the image matches the CLIP input dimension input dim
followed by center crop operation which results in a square
patch input dim×input dim output. Subsequently, as the
ratio between the bigger side and the smaller side increases,
the area of the image lost after the preprocess increases.

To overcome such loss of information the simplest ap-
proach is to perform a zero-padding to match the smaller
side to the bigger side (i.e. squaring the image). By doing
this we zero out the loss of content information attributable
to the center crop operation, however we lower the reso-
lution of the useful portion of the image since the CLIP
image encoder input dimension is fixed. Therefore, differ-
ently from our previous work [3], we propose a new prepro-
cess pipeline which aims to find a compromise between the
aforementioned pipelines: before applying the center crop
operation we pad an image only if its aspect ratio is above
a fixed target ratio. Moreover when we pad an image we do
not make it square, instead we bring its aspect ratio to the
target ratio. This approach has improved the performance
with respect to our previous results [3].

3.2. Implementation Details

In the following experiments and in the demo we use the
CLIP model denoted as RN50x4, since it outperforms the
RN50 model: the visual encoder follows the EfficientNet-
style model scaling and uses approximately 4× the compu-
tation of a standard ResNet-50 [14]. It takes as input images
of 288×288 pixels and outputs features of 640 dimensions.
The text encoder is a transformer encoder with 12 layers, 10
heads and a width of 640.

In the experiments, the CLIP encoders have been kept
frozen and the only trained part of the model is the Com-
biner function. The target ratio in the preprocess pipeline
was set to 1.25. We used PyTorch in our experiments. We
used Adam optimizer [21] with a learning rate set to 2e−5.
We trained the model for a maximum of 300 epochs and the
batch size was set to 4096.

4. The proposed demo
The proposed demo aims to show in an interactive way

how the multi-modal retrieval system described previously
works. Such a demo has a twofold objective: the first one
is to dynamically illustrate how the system works when
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we use as query a pair of (reference image, relative cap-
tion) which is included in the datasets. The second ob-
jective is to simulate a real-world scenario where the user
can query the system with arbitrary captions not included
in the datasets. The interface of our demo is capable of
handling both objectives simultaneously: it is able to sug-
gest the relative captions associated to each reference image
marking also the ground-truth target image in the results
and it provides a text area where the user inputs an arbitrary
caption. In the demo are included both datasets we experi-
mented with: FashionIQ and CIRR. The demo is available
at http://cir.micc.unifi.it:5000

Figure 4 shows a diagram of how the application works.

4.1. Architecture

The demo is developed as a web-app accessible through
a standard web-browser, either on PC or mobile devices.
Before starting the demo it is necessary to extract all the vi-
sual features of the images using the CLIP image encoder.
This computation is performed off-line to avoid recalcula-
tion for every query. From a real-world perspective this pre-
computation makes sense, in fact, if we think for instance
of an online shop, the images are not dynamically uploaded

by the users but they represent the items that the shop can
sell. On the other hand, the textual features are computed
on-the-fly when a query is performed since in a real context
the queries of the users are not known a priori. After the
visual feature extraction the demo is ready to run.

The demo allows the user to choose first the dataset,
then the reference image and finally to insert the caption
(or choose between the default ones of the dataset). When
the user selects a reference image and fills in (or selects)
a relative caption, firstly the corresponding visual features
are selected from the pre-computed visual features. The tex-
tual features are then extracted using the CLIP text encoder
and subsequently the visual and text features are combined
using the Combiner network, which outputs the combined
features. Finally, as in standard image retrieval, the com-
bined features are used to query the database of visual fea-
tures. It is very important to notice that, once the combined
features are computed, the conditioned image retrieval is to-
tally analogous to a standard content-based image retrieval.
Therefore all the techniques that are commonly used to en-
sure scalability of CBIR systems can be applied to the pro-
posed system, such as hashing, approximate search, e.g. us-
ing the FAISS [19], etc. In the demo, the top 50 results



Choose the dataset
you want to

experience with

Choose the reference
image

Choose or insert the
relative caption

Reference
image is green

Captions

is longer

...

Results

relative
caption

Insert here

Reference
image

Figure 4. Demo overview. Firstly the user has to choose the dataset, there are two possible choices: fashion dataset FashionIQ and real-life
images dataset CIRR. After choosing the reference image the user can insert a relative caption or select among the default ones of the
dataset. Finally they can check out the results. If the user is not satisfy by the results, by clicking on a retrieved image, they can use such
image as a reference image in a new query

are shown since in both datasets the broader scale metrics is
R@50. Moreover, in the CIRR dataset, when a dataset cap-
tion is selected, also the subset results are displayed. Since
we have two different datasets with completely different im-
age domains we have two different Combiner networks, one
for FashionIQ and the other for CIRR dataset. The right
combiner network is automatically selected when choosing
the dataset used in the demo.

4.2. Implementation details

The backend of the web-app is a small server written in
Python with the Flask micro-framework. The frontend is
written with the Bootstrap library and can be used on PCs
and mobile devices. To reduce the amount of GPU mem-
ory the pre-computed features are stored in CPU RAM and
loaded in the GPU only when they are needed. To further re-
duce the amount of required memory (and to speedup com-
putations) both the Combiner networks and CLIP model
work in half (fp16) precision. To remain consistent with
standard evaluation protocol of FashionIQ we consider the
dataset subdivided in three categories (Dress, Toptee and
Shirt), this implies that when the reference image belongs
to a category, when retrieval is carried out, only the images
of the same category are taken into consideration. This is
a reasonable design choice also in a real-world deployment
since we can expect that a user interested in a dress does not
want to look at shirts.

The suggested captions are only those included in the
validation set and, when one of them is selected, the re-
trieved images are those of the validation set. This choice
was made so that the demo could highlight the ground truth
target image in the retrieved results. In fact, in both datasets,
the ground truth labels are not released for the test set. On
the contrary, when the user inserts a new query that is not
part of the dataset, as they would in a real-world scenario,
the system searches for relevant images both in the valida-
tion and test set.

We deploy our demo on a machine with an Intel Xeon
E5-2620 v3 CPU, a NVIDIA Titan X 12GB GPU and
128GB of RAM. The retrieval process takes on average less
than 35ms with a GPU RAM occupation of 743 MB (with a
single simultaneous access). We have tested the demo also
on a low-end laptop with Intel Core i7-7500U CPU, and a
NVIDIA GeForce 940MX 2GB GPU and 16GB memory;
also in this case the demo runs smoothly with an average
retrieval time of 70ms. Obviously the number of images
involved in the retrieval is relatively small (more details in
Section 5), however the fact that the Combiner network is
able to run almost in real-time on such a low-end device
makes us believe that the system can be scaled to large-scale
retrieval.

4.3. Usage and Examples

Firstly, when the demo is booted up, it is necessary to
choose the dataset on which to perform the experiments.
As mentioned earlier the user can make two choices: the
fashion dataset FashionIQ and the real-life images dataset
CIRR. Using the navigation bar it is always possible to
change the choice of the dataset during the execution of the
whole demo. In Figure 5 the dataset choice page is shown.

Once the dataset is chosen, the user must choose the ref-
erence image he desires. Some reference images are ran-
domly selected from the dataset, as a suggestion to the user.
Refreshing the page shows a different set each time. Fig-
ure 6 shows the interface of the demo that allows such a
choice.

To complete the multi-modal query, a relative caption
must also be provided. The demo allows the user both to
choose among the captions included in the validation set
and to insert an arbitrary caption. Figure 7 shows how the
demo interface allows these two options.

Finally the user can check the results of the multi-modal
query he has inserted. Furthermore, if the user wants to re-
fine the results, a retrieved image can be used as a reference



Figure 5. Dataset choice demo page. The user can either select
FashionIQ or CIRR dataset.

Figure 6. Reference image choice demo page. The user can select
the reference image they prefer.

Figure 7. Relative caption insertion demo page. The user can
either select or insert a relative caption.

image in a new query. This can be done by clicking on the
retrieved image that the user wants to use in a new query.
Such an iterative process allows a multi-step search by sim-
ulating a dialog-based search system which is more natural
to use and allows the user to precisely describe what they
want to search for. Figure 8 shows the demo results page.

A video showing a full example of use of the system is
available at https://youtu.be/ifBQA9xAbhw.

5. Experimental results
In this section we report a comparison of the perfor-

mance of the proposed system with competing state-of-the-
art approaches on two standard datasets, FashionIQ and
CIRR. These datasets are used also in the demo.

Figure 8. Results demo page. The user can check the results of the
multimodal query he has inserted. Furthermore, by clicking on a
retrieved image they can use it as reference image in a new query

5.1. FashionIQ

FashionIQ [40] provides 77,684 fashion images crawled
from the web divided into three different categories: Dress,
Toptee and Shirt; the authors provide standard train, vali-
dation and test splits. The training set comprises 18,000
training triplets made of a reference image, a pair of rela-
tive captions and a target image, and in total is composed of
46,609 images. The captions describe properties to modify
in the reference image to match the target image. The vali-
dation set has 15,537 images and 6,017 triplets, and the test
set is composed of 15,538 images and 6,119 triplets.

We follow the standard experimental setting as in [20,
24]. The evaluation metric used is the average recall at rank
K (Recall@K), in particular we use Recall@10 (R@10) and
Recall@50 (R@50). Note that for each triplet there is only
a positive index image. Hence, each individual query has
R@K either zero or one. All results reported have been
computed on the validation set since at the time of writing
the test set ground-truth labels have not been released.

5.2. CIRR

The CIRR (Compose Image Retrieval on Real-life im-
ages) [27] dataset is thought for overcoming two common
issues that occur in conditioned image retrieval datasets
(such as FashionIQ): the lack of a sufficient visual complex-
ity due to the restricted image domain and the existence of
many false-negatives since the target images cannot be ex-
tensively labeled for each (reference, text) pair. CIRR is
made of 21,552 real-life images taken from the popular nat-
ural language reasoning dataset NLV R2 [35]. It follows
the same structure of the FashionIQ dataset and contains
36,554 triplets randomly assigned in 80% for training, 10%
for validation and 10% for test. The images of the dataset
are grouped in multiple subsets of six images that are se-
mantically and visually similar. The relative captions are
collected to describe differences between two images in the



same subset. This is done in order to have negative images
with high visual similarity, otherwise it would be trivial to
discriminate between the reference and target images.

Following previous works, the standard evaluation pro-
tocol proposed by the authors of the dataset is to report the
recall at rank K (Recall@K) at four different ranks (1, 5,
10, 50). Moreover, thanks to the unique design of the CIRR
dataset, it is also reported the RecallSubset which considers
only the images in the subset of the query. This subset
metric has two main benefits: it is not affected by false-
negative samples and, thanks to negative samples with high
visual similarity, it captures fine-grained image-text modifi-
cations. Of these metrics, R@5 accounts for possible false-
negatives in the entire corpus, and RSubset@1 illustrates the
fine-grained capabilities.

5.3. Comparison with SotA

In these experiments we compare the proposed method
with state-of-the-art approaches on two standard and chal-
lenging datasets.

Shirt Dress Toptee Average
Method R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

JVSM [4] 12.0 27.1 10.7 25.9 13.0 26.9 11.9 26.6
CIRPLANT w/OSCAR [27] 17.53 38.81 17.45 40.41 21.64 45.38 18.87 41.53
TRACE w/BERT [16] 20.80 40.80 22.70 44.91 24.22 49.80 22.57 46.19
VAL w/GloVe [5] 22.38 44.15 22.53 44.00 27.53 51.68 24.15 46.61
MAAF [8] 21.3 44.2 23.8 48.6 27.9 53.6 24.3 48.8
CurlingNet [42] 21.45 44.56 26.15 53.24 30.12 55.23 25.90 51.01
RTIC-GCN w/GloVe [33] 23.79 47.25 29.15 54.04 31.61 57.98 28.18 53.09
CoSMo [24] 24.90 49.18 25.64 50.30 29.21 57.46 26.58 52.31
DCNet [20] 23.95 47.30 28.95 56.07 30.44 58.29 27.78 53.89
SAC w/BERT [15] 28.02 51.86 26.52 51.01 32.70 61.23 29.08 54.70

Proposed approach 36.36 58.00 31.63 56.67 38.19 62.42 35.39 59.03

Table 1. Comparison between our method and current state-of-
the-art models on the Fashion-IQ validation set. Best scores are
highlighted in bold, second best scores underlined.

Recall@K Rsubset@K
Method K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

TIRG† [38] 14.61 48.37 64.08 90.03 22.67 44.97 65.14
TIRG+LastConv† [38] 11.04 35.68 51.27 83.29 23.82 45.65 64.55
MAAF† [8] 10.31 33.03 48.30 80.06 21.05 41.81 61.60
MAAF+BERT† [8] 10.12 33.10 48.01 80.57 22.04 42.41 62.14
MAAF−IT† [8] 9.90 32.86 48.83 80.27 21.17 42.04 60.91
MAAF−RP† [8] 10.22 33.32 48.68 81.84 21.41 42.17 61.60
CIRPLANT † [27] 15.18 43.36 60.48 87.64 33.81 56.99 75.40
CIRPLANT w/OSCAR † [27] 19.55 52.55 68.39 92.38 39.20 63.03 79.49

Proposed approach 33.59 65.35 77.35 95.21 62.39 81.81 92.02

Table 2. Comparison between our method and current state-of-
the-art models on the CIRR test set. Best scores are highlighted in
bold, second best scores underlined. † denotes results cited from
[27]

Table 1 shows the quantitative results on the Fashion-IQ
validation set. Our approach outperforms the state-of-the-
art by improving up to ∼ 7% in average on the R@10 metric
and ∼ 5% in average on the R@50 metric over the best
competing methods. Our method has the highest recall in

all categories, in particular we can observe how the margin
is particularly large in the Shirt category.

Table 2 shows the quantitative results on the CIRR test
set obtained through the official evaluation server. Also in
this dataset our approach consistently outperforms current
methods by a large margin especially in low rank recall
measures where we achieve an improvement up to ∼ 14%
in R@1. Also the results of the retrieval within the subset
of the queries are very good, with an improvement up to
∼ 23% in RSubset@1; this excellent result shows how our
approach is also capable of capturing fine-grained modifi-
cations between similar images.

6. Conclusions

In this paper we tackled the problem of conditioned im-
age retrieval using the recent CLIP model where we ex-
ploited its zero shot transfer features. Using a novel pre-
process pipeline tailored for using CLIP in retrieval tasks,
we developed a Combiner network that is able to com-
pute a combined feature made from reference images in-
tegrated with a textual description. In addition we propose
a pre-processing padding method that can improve the per-
formance in datasets that have images with many different
aspect ratios. We perform experiments on the challenging
fashion dataset FashionIQ and the recently presented CIRR
dataset. Experiments on both datasets show that our ap-
proach is able to outperform more complex state of the art
methods by a significant margin.

The demo system allows users to test the proposed
method using image-text pairs of the two datasets or let
users provide their own texts, simulating a real-world de-
ployment of the system. The interface allows to implement
a turn-based interaction that simulates the behaviour of a
user on an e-commerce site. The system can be used also
on relatively low performance servers, and can be scaled to
large-scale datasets using techniques commonly employed
in standard CBIR systems.

6.1. Resources

Code, trained Combiner networks and instructions on
how to run the demo locally are available at https://
github.com/ABaldrati/CLIP4CirDemo.
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